- 八年級數(shù)學(xué)《平面直角坐標系2》教學(xué)設(shè)計 推薦度:
- 相關(guān)推薦
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計(精選10篇)
作為一位優(yōu)秀的人民教師,就難以避免地要準備教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標、教學(xué)重難點、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。那么應(yīng)當如何寫教學(xué)設(shè)計呢?下面是小編整理的八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計(精選10篇),僅供參考,希望能夠幫助到大家。

八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 1
教材分析
1、教材的地位與作用
平面直角坐標系是圖形與數(shù)量之間的橋梁,有了它我們便可以把幾何問題轉(zhuǎn)化為代數(shù)問題,也可以把代數(shù)問題轉(zhuǎn)化為幾何問題。本章內(nèi)容從數(shù)的角度刻畫了第五章有關(guān)平移的內(nèi)容,對學(xué)生以后的學(xué)習(xí)起到鋪墊作用,6.1.2節(jié)平面坐標系主要是介紹如何建立平面坐標系,如何確定點的坐標和由點的坐標尋找點的位置,以及平面坐標系中特殊部位點的坐標特征,根據(jù)學(xué)生的接受能力,我把本內(nèi)容分為2課時,這是第一課時,主要介紹如何建立坐標系和在給定的坐標系中確定點的坐標。
2、教學(xué)目標
根據(jù)新課標要求,數(shù)學(xué)的教學(xué)不僅要傳授知識,更要注重學(xué)生在學(xué)習(xí)中所表現(xiàn)出來的情感態(tài)度,幫助學(xué)生認識自我、建立信心。
知識能力:①認識平面直角坐標系,了解點與坐標的對應(yīng)系;
、谠诮o定的直角坐標系中,能由點的'位置寫出點坐標。
數(shù)學(xué)思考:①通過尋找確定位置,發(fā)展初步的空間觀念;
、谕ㄟ^學(xué)習(xí)用坐標的位置,滲透數(shù)形結(jié)合思想
解決問題:通過運用確定點坐標,發(fā)展學(xué)生的應(yīng)用意識。
情感態(tài)度:①通過建立平面直角坐標系和確定坐標系中點的坐標,培養(yǎng)學(xué)生合作交流與探索精神;
、谕ㄟ^介紹數(shù)學(xué)家的故事,滲透理想和情感的教育。
3、重難點
根據(jù)本章知識內(nèi)容以及學(xué)生對坐標橫縱坐標書寫易出錯誤,確定本節(jié)重難點為:
重點:認識平面坐標系
難點:根據(jù)點的位置寫出點的坐標
教法分析
針對學(xué)初一學(xué)生的年齡特點和心理特征,以及他們現(xiàn)有知識水平,通過科學(xué)家發(fā)現(xiàn)點的坐標形成的經(jīng)過啟迪學(xué)生思維,通過小組合作與交流及嘗試練習(xí),促進學(xué)生共同進步,并用肯定和激勵的言語鼓舞、激勵學(xué)生。
學(xué)法分析
通過教學(xué)引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),并借助如何確定點的坐標,培養(yǎng)學(xué)生的創(chuàng)新能力和概括表達能力,運用科學(xué)家的故事,激發(fā)學(xué)生勇于挑戰(zhàn)困難決心,形成在科學(xué)探索中的堅忍不拔的毅力。
教學(xué)過程分析
創(chuàng)設(shè)問題情景,引入新課 → 故事《笛卡兒的夢》,啟迪探索問題思路 → 嘗試與探索 → 鞏固練習(xí) → 總結(jié)歸納,布置作業(yè)
活動1、孔子曰:“溫故而知新”,所以開課我先創(chuàng)建問題(1)用于復(fù)習(xí)數(shù)軸,在復(fù)習(xí)了相舊知的基礎(chǔ)上,引出如果學(xué)校東150米有圖書館,如何確定圖書館的位置,從而引出新知,也讓學(xué)生到數(shù)學(xué)的發(fā)展是隨著人們對觀察事物認識發(fā)展而發(fā)展。
活動2、笛卡兒的夢。新課程標準提出學(xué)生對數(shù)學(xué)不僅要關(guān)注學(xué)習(xí)的結(jié)果,更要關(guān)注他們的學(xué)習(xí)過程,通過笛卡兒的夢可讓學(xué)生經(jīng)歷數(shù)學(xué)問題,產(chǎn)生和解決的過程啟迪學(xué)生的思維,順利實現(xiàn)學(xué)生對點與坐標的對應(yīng)關(guān)系,由一維到二維過渡,從而達到突出重點、突破難點,通過此過程也讓學(xué)生體會科學(xué)家在探究問題中所表現(xiàn)出的那種精神,培養(yǎng)學(xué)生勇于探索,克服困難的品質(zhì)和意志。
活動3、嘗試探索。在嘗試中給出直角坐標系和坐標系中的一些點,讓學(xué)生確定點的坐標,這樣有利用鞏固重點,并根據(jù)反饋情況及時糾正錯誤,接下來給出另一坐標系和坐標軸上的點,讓學(xué)生先寫出點的坐標,再根據(jù)點的坐描述坐標軸上點的特征,這樣按排先學(xué)一般點的坐標,再探究特殊點的坐標符合學(xué)生的學(xué)習(xí)規(guī)律,也更容易理解和掌握。另外,通過數(shù)據(jù)描述點的特征,有利于發(fā)展學(xué)生的統(tǒng)計觀念。
活動4、鞏固訓(xùn)練①P49第1題用來進一步鞏固知識;②用坐標來表示引例,②中的問題使所學(xué)知識馬上得到應(yīng)用,讓學(xué)生能體會到知識的應(yīng)用。
活動5、總結(jié)歸納。根據(jù)教師所提出的問題讓學(xué)生歸納有利于培養(yǎng)學(xué)生的歸納能力和表述能力,利用“人生就是一個坐標”及時對學(xué)生進行理想教育,有利于學(xué)生人格的塑造。
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 2
教學(xué)目標:
1.理解平面直角坐標系的意義;掌握在平面直角坐標系中刻畫點的位置的方法。
2.掌握坐標法解決幾何問題的步驟;體會坐標系的作用。
教學(xué)重點:
體會直角坐標系的作用。
教學(xué)難點:
能夠建立適當?shù)闹苯亲鴺讼?解決數(shù)學(xué)問題。
授課類型:
新授課
教學(xué)模式:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
教 具:
多媒體、實物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運行,并在按計劃完成科學(xué)考察任務(wù)后,安全、準確的返回地球,從火箭升空的時刻開始,需要隨時測定飛船在空中的位置機器運動的軌跡。
情境2:運動會的開幕式上常常有大型團體操的表演,其中不斷變化的背景圖案是由看臺上座位排列整齊的人群不斷翻動手中的一本畫布構(gòu)成的。要出現(xiàn)正確的.背景圖案,需要缺點不同的畫布所在的位置。
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標系?
二、學(xué)生活動
學(xué)生回顧
刻畫一個幾何圖形的位置,需要設(shè)定一個參照系
1、數(shù)軸 它使直線上任一點P都可以由惟一的實數(shù)x確定
2、平面直角坐標系
在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定。
3、空間直角坐標系
在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數(shù)對(x,y,z)確定。
三、講解新課:
1、建立坐標系是為了確定點的位置,因此,在所建的坐標系中應(yīng)滿足:
任意一點都有確定的坐標與其對應(yīng);反之,依據(jù)一個點的坐標就能確定這個點的位置
2、確定點的位置就是求出這個點在設(shè)定的坐標系中的坐標
四、數(shù)學(xué)運用
例1 選擇適當?shù)钠矫嬷苯亲鴺讼,表示邊長為1的正六邊形的頂點。
變式訓(xùn)練
如何通過它們到點O的距離以及它們相對于點O的方位來刻畫,即用”距離和方向”確定點的位置
例2 已知B村位于A村的正西方1公里處,原計劃經(jīng)過B村沿著北偏東60的方向設(shè)一條地下管線m.但在A村的西北方向400米出,發(fā)現(xiàn)一古代文物遺址W.根據(jù)初步勘探的結(jié)果,文物管理部門將遺址W周圍100米范圍劃為禁區(qū).試問:埋設(shè)地下管線m的計劃需要修改嗎?
變式訓(xùn)練
1、一炮彈在某處爆炸,在A處聽到爆炸的時間比在B處晚2s,已知A、B兩地相距800米,并且此時的聲速為340m/s,求曲線的方程
2、在面積為1的中,建立適當?shù)淖鴺讼担笠訫,N為焦點并過點P的橢圓方程
例3 已知Q(a,b),分別按下列條件求出P 的坐標
。1)P是點Q 關(guān)于點M(m,n)的對稱點
(2)P是點Q 關(guān)于直線l:x-y+4=0的對稱點(Q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點。
思考
通過平面變換可以把曲線變?yōu)橹行脑谠c的單位圓,請求出該復(fù)合變換?
五、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標系的意義。
2. 利用平面直角坐標系解決相應(yīng)的數(shù)學(xué)問題。
六、課后作業(yè):
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 3
教學(xué)目標
知識與技能
1.在給定的直角坐標系下,會根據(jù)坐標描出點的位置;
2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標 系、描點、連線、看圖以及由點找坐標等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點確定坐標到根據(jù)坐標描點的轉(zhuǎn)化過程,進一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。
情感態(tài)度與價值觀
通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學(xué)難點:在已知的直角坐標系下找點、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點)
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標系的定義,以及橫軸、縱軸、點 的坐標的定義,練習(xí)了在平面直角坐標系中由點找坐標,還探討了橫坐標或縱坐標相同的點的連線與坐標軸的關(guān)系,坐標軸上點的坐標有什么特點。
練習(xí):指出下列 各點以及所在象限或坐標軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點找坐標是已知點在直角坐標 系中的位置,根據(jù)這點在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標,反過來,已知坐標,讓 你在直角坐標系中找點,你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學(xué)們拿出準備好的方格紙,自己建立平面直角坐標系,然后按照我給出的坐標,在直角坐標系中描點,并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個平面直角坐標系中,描出下列各組內(nèi)的點用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?
(出示學(xué)生的`作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標系畫,要求每位同學(xué)獨立完成。
(學(xué)生描點、畫圖)
(拿出一位做對的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨立完成,后小組討論)
(補充)1.在直角坐標系中描出下列各點,并將各組內(nèi)的點用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標系中,設(shè)法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。
先獨立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標系下,寫出點的坐標。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 4
學(xué)習(xí)目標
1.回顧在平面直角坐標系中刻畫點的位置的方法.
2. 能夠建立適當?shù)闹苯亲鴺讼?解決數(shù)學(xué)問題.
學(xué)習(xí)過程
一、學(xué)前準備
1、通過直角坐標系,平面上的 與 ( ),曲線與 建立了聯(lián)系,實現(xiàn)了 。
2、閱讀P3思考得出在直角坐標系中解決實際問題的過程是:
二、新課導(dǎo)學(xué)
◆探究新知(預(yù)習(xí)教材P1~P4,找出疑惑之處)
問題1:如何刻畫一個幾何圖形的位置?
問題2:如何創(chuàng)建坐標系?
問題3:
(1).如何把平面內(nèi)的點與有序?qū)崝?shù)對(x,y)建立聯(lián)系?
(2).平面直角坐標系中點和有序?qū)崝?shù)對(x,y)是怎樣的關(guān)系?
問題4:如何研究曲線與方程間的關(guān)系?結(jié)合課本例子說明曲線與方程的關(guān)系?
問題5:如何刻畫一個幾何圖形的位置?
需要設(shè)定一個參照系
(1)、數(shù)軸 它使直線上任一點P都可以由惟一的實數(shù)x確定
(2)、平面直角坐標系 :在平面上,當取定兩條互相垂直的直線的交點為原點,并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標系。它使平面上任一點P都可以由惟一的實數(shù)對(x,y)確定
(3)、空間直角坐標系 :在空間中,選擇兩兩垂直且交于一點的三條直線,當取定這三條直線的交點為原點,并確定了度量單位和這三條直線方向,就建立了空間直角坐標系。它使空間上任一點P都可以由惟一的實數(shù)對(x,y,z)確定
(4)、抽象概括:在平面直角坐標系中,如果某曲線C上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:A.曲線C上的.點坐標都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標的點都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。
問題6:如何建系?
根據(jù)幾何特點選擇適當?shù)闹苯亲鴺讼怠?/p>
(1)如果圖形有對稱中心,可以選對稱中心為坐標原點;
(2)如果圖形有對稱軸,可以選擇對稱軸為坐標軸;
(3)使圖形上的特殊點盡可能多的在坐標軸上。
◆應(yīng)用示例
例1.已知△ABC的三邊 滿足 ,BE,CF分別為AC,AB上的中線,建立適當?shù)钠矫嬷苯亲鴺讼堤骄緽E和CF的位置關(guān)系。(教材P4例1)
◆反饋練習(xí)
1.兩個定點的距離為6,點M到這兩個定點的距離的平方和為26,求點M的軌跡。
解:
三、總結(jié)提升
◆本節(jié)小結(jié)
本節(jié)學(xué)習(xí)了哪些內(nèi)容?
答:建立適當?shù)闹苯亲鴺讼?解決數(shù)學(xué)問題
學(xué)習(xí)評價
你完成本節(jié)導(dǎo)學(xué)案的情況為( )
A.很好 B.較好 C. 一般 D.較差
課后作業(yè)
1. 已知點A為定點,線段BC在定直線 上滑動,已知 ,點A到直線 的距離為3,求△ABC的外心的軌跡方程。
2. (選做題)用兩種以上的方法證明:三角形的三條高線交于一點。
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 5
一、教學(xué)目標
1、知識與技能目標:認識平面直角坐標系,了解點與坐標的對應(yīng)關(guān)系;
2、過程與方法目標:通過研究平面直角坐標中數(shù)與點的對應(yīng)關(guān)系,能根據(jù)坐標描出點的位置;
3、情感態(tài)度與價值觀目標:感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會品面直角坐標系在解決實際問題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。
二、教學(xué)重難點
重點:理解平面直角坐標中點與數(shù)的一一對應(yīng)關(guān)系;
難點:根據(jù)坐標描出點的位置,以及坐標軸上的點的坐標特點。
三、教學(xué)用具
教師準備四張大的紙質(zhì)坐標格子。
四、教學(xué)過程
(一)溫故知新,導(dǎo)入新課
游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對,大家學(xué)習(xí)積極性很高,今天老師先考考你們, 看你們掌握了多少。
我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學(xué)們先找準自己的數(shù)對號。聽老師報數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應(yīng)太慢和站錯了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。
我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對,可以唯一的確定與之對應(yīng)的同學(xué)。
(二)新課教學(xué)
課本例子:我們知道數(shù)軸上的點可以用一個數(shù)來表示,這個數(shù)叫做這個點的坐標。例如點A數(shù)軸上的坐標是-4,點B數(shù)軸上的坐標是2;我們說坐標是3.5的點,也可以在數(shù)軸上唯一確定。
教師提問1:類似于數(shù)軸確定直線上點的位置,能不能找到一種方法來確定平面內(nèi)點的位置呢?平面內(nèi)給出任意點A、B、C、D,我們怎么確定這些點的位置
學(xué)生活動:小a說可以像教室座位一樣給任意點編一個橫排縱排的號,小B說我們可以每個點列一個數(shù)軸···
教師活動:引導(dǎo)學(xué)生思考,怎么才能用同一標準,方便的確定每一點的位置?
結(jié)合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個橫縱的數(shù)軸?
得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸,組成平面直角坐標系,水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標軸的交點為平面直角坐標系的'原點。
那有了這樣的平面直角坐標系,平面內(nèi)的點就可以用之前學(xué)的有序數(shù)對來表示了。例如:由A分別向x軸和y軸作垂線。垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是4,我們說A的坐標是3,縱坐標是4,有序數(shù)對(3,4)就叫做A的坐標,記作A(3,4)
教師提問2:同學(xué)們按照這種做法,在坐標紙上標出B、C、D的坐標。
教師活動:走下講臺,關(guān)注學(xué)生的匯坐標過程方法,指出學(xué)生出現(xiàn)問題的地方,并予以改正。
教師提問3:在橫縱坐標軸上各標一點E、F,問:坐標原點以及這兩點的坐標是什么?
教師活動:引導(dǎo)學(xué)生思考歸納坐標軸上的點的坐標的特點。
得出結(jié)論:原點的坐標是(0,0),x軸上的點的坐標的縱坐標為0;y軸上的點的坐標的橫坐標為0。
(三)課程鞏固
師生互動:與學(xué)生一起回憶平面直角坐標系的各部分的意義,平面內(nèi)的點怎么對應(yīng)坐標,以及坐標軸上的點的坐標特點。
“練一練”:
在黑板上貼出四張事先準備好的紙質(zhì)坐標格子,在上面標出任意的ABCDEFG等點,每組我點一個按坐標序列對,對應(yīng)的同學(xué)上黑板,來描出各點的坐標。對一個加一分,錯一個扣一分,得分相同的看用時,時間短者勝,過程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。
(1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來描點。
教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚,表現(xiàn)稍遜的學(xué)生不要氣餒,給予鼓勵,爭取下一次可以獲勝。
(四)小結(jié)作業(yè)
思考平面直角坐標系中坐標與點的對應(yīng)關(guān)系,如何由坐標值確定點的位置。下節(jié)課我們會探討這個問題。
五、板書設(shè)計
平面直角坐標系:平面內(nèi)畫兩條相互垂直、原點重合的數(shù)軸組成
水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;
豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;
兩坐標軸的交點為平面直角坐標系的原點。
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 6
一.利用已有知識,引入
1.如圖,怎樣說明數(shù)軸上點A和點B的位置.
2.根據(jù)下圖,你能正確說出各個象棋子的位置嗎?
二.明確概念
平面直角坐標系:平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系(rectangularcoordinatesystem).水平的數(shù)軸稱為x軸(x-axis)或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸為y軸(y-axis)或縱軸,取向上方向為正方向;兩個坐標軸的交點為平面直角坐標系的原點.
點的坐標:我們用一對有序數(shù)對表示平面上的點,這對數(shù)叫坐標.表示方法為(a,b).a是點對應(yīng)橫軸上的數(shù)值,b是點在縱軸上對應(yīng)的數(shù)值.
例1:寫出圖中A、B、C、D點的坐標.
建立平面直角坐標系后,平面被坐標軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限.
你能說出例1中各點在第幾象限嗎?
例2:在平面直角坐標系中描出下列各點.
A(3,4);B(-1,2);C(-3,-2);D(2,-2)
問題1:各象限點的坐標有什么特征?
三.深入探索
探索:
識別坐標和點的`位置關(guān)系,以及由坐標判斷兩點的關(guān)系以及兩點所確定的直線的位置關(guān)系.
[小結(jié)]
1.平面直角坐標系
2.點的坐標及其表示
3.各象限內(nèi)點的坐標的特征
4.坐標的簡單應(yīng)用?
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 7
學(xué)習(xí)目標:
1、能說出平面直角坐標系,以及橫軸、縱軸、原點、坐標的概念。會畫平面直角坐標系,并能在給定的平面直角坐標系中由點的位置寫出它的坐標,以及能根據(jù)坐標描出點的位置。
2、知道平面直角坐標系內(nèi)有幾個象限,清楚各象限的點的坐標的符號特點。
3、給出坐標能判斷所在象限。
學(xué)習(xí)重點:
1、在給定的平面直角坐標系內(nèi),會根據(jù)坐標確定點,根據(jù)點的位置寫出點的坐標。
2、知道象限內(nèi)點的坐標符號的'特點,根據(jù)點的坐標判斷其所在象限。
學(xué)習(xí)難點:
坐標軸上點的坐標的特點。
學(xué)習(xí)方法:
自主學(xué)習(xí)合作探究
學(xué)習(xí)過程:
1、畫一條數(shù)軸,在數(shù)軸上標出3,—3,0,2
數(shù)軸上的點可以用個實數(shù)來表示,這個實數(shù)叫做___________。
2、思考:直線上的一個點可以用數(shù)軸上一個實數(shù)來表示點的位置,能不能找到一種辦法來確定平面內(nèi)的點的位置呢?(例如圖7.1—3中A、B、C、D各點)。
3、自學(xué)課本第66—67頁的內(nèi)容,然后填空。
。1)我們可以在平面內(nèi)畫兩條互相_____、_____重合的數(shù)軸,組成________________,水平的數(shù)軸稱為_____軸或_____軸,習(xí)慣上取向____為正方向;豎直的數(shù)軸稱為____軸或____軸,取向___方向為正方向;兩坐標軸的交點為平面直角坐標系的________。
。2)如何確定點的坐標。(閱讀課本第66頁最后一段)如圖7.1—4寫出點B、C、D的坐標_______________________。
思考:原點O的坐標是什么?x軸和y軸上的點的坐標有什么特點?
《實數(shù)、平面直角坐標系》測試題
1、如果點M到x軸和y軸的距離相等,則點M橫、縱坐標的關(guān)系是()。
A、相等 B、互為相反數(shù) C、互為倒數(shù) D、相等或互為相反數(shù)
2、將某圖形的橫坐標都減去2,縱坐標不變,則該圖形()。
A、向右平移2個單位 B、向左平移2個單位
C、向上平移2個單位 D、向下平移2個單位
《實數(shù)、平面直角坐標系》、填空題
1、生活中只要你留心,就會發(fā)現(xiàn)有許多用數(shù)字“代替”目標位置的現(xiàn)象。
。1)一張電影票上寫有“7排9號”,進電影院先找,后找,這是一對有序數(shù)對;
。2)一張硬座的火車票“10車廂18號”,上火車時你得先找,再在車廂里找號座位。
2、教室內(nèi)座位,列數(shù)在前,排數(shù)在后。如果李小剛的座位是(3,4),則(3,4)意義是。
3、某一本書在印刷上有錯別字,在第20頁第4行從左數(shù)第11個字上,如果用數(shù)序表示可記為(20,4,11),你是電腦打字員你認為(100,20,4)的意義是。
4、在電影票上將“10排8號”前記為(10,8),那么(25,11)表示的意義是。
5、小亮家住在3號路,門牌是18號,可記為(3,18),那么小琪家在5號路門牌號是49號,可記為。
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 8
一、學(xué)生起點分析
《平面直角坐標系》是八年級上冊第五章《位置與坐標》第二節(jié)內(nèi)容。本章是“圖形與坐標”的主體內(nèi)容,不僅呈現(xiàn)了“確定位置的多種方法、平面直角坐標系”等內(nèi)容,而且也從坐標的角度使學(xué)生進一步體會圖形平移、軸對稱的數(shù)學(xué)內(nèi)涵,同時又是一次函數(shù)的重要基礎(chǔ)!镀矫嬷苯亲鴺讼怠贩从称矫嬷苯亲鴺讼蹬c現(xiàn)實世界的密切聯(lián)系,讓學(xué)生認識數(shù)學(xué)與人類生活的密切聯(lián)系和對人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動的積極性和好奇心。因此,教學(xué)過程中創(chuàng)設(shè)生動活潑、直觀形象、且貼近他們生活的問題情境,會引起學(xué)生的極大關(guān)注,會有利于學(xué)生對內(nèi)容的較深層次的理解;另一方面,學(xué)生已經(jīng)具備了一定的學(xué)習(xí)能力,可多為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機會,促使他們主動參與、積極探究。
二、教學(xué)任務(wù)分析
教學(xué)目標設(shè)計:
知識目標:
1、理解平面直角坐標系以及橫軸、縱軸、原點、坐標等概念;
2、認識并能畫出平面直角坐標系;
3、能在給定的直角坐標系中,由點的位置寫出它的坐標。
能力目標:
1、通過畫坐標系、由點找坐標等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識、合作交流意識;
2、通過對一些點的坐標進行觀察,探索坐標軸上點的坐標有什么特點,縱坐標或橫坐標相同的點所連成的線段與兩坐標軸之間的關(guān)系,培養(yǎng)學(xué)生的探索意識和能力。
情感目標:
由平面直角坐標系的有關(guān)內(nèi)容,以及由點找坐標,反映平面直角坐標系與現(xiàn)實世界的密切聯(lián)系,讓學(xué)生認識數(shù)學(xué)與人類生活的密切聯(lián)系和對人類歷史發(fā)展的作用,提高學(xué)生參加數(shù)學(xué)學(xué)習(xí)活動的積極性和好奇心。
教學(xué)重點:
1、理解平面直角坐標系的有關(guān)知識;
2、在給定的平面直角坐標系中,會根據(jù)點的位置寫出它的坐標;
3、由觀察點的坐標、縱坐標或橫坐標相同的點所連成的線段與兩坐標軸之間的關(guān)系,說明坐標軸上點的坐標有什么特點。
教學(xué)難點:
1、橫(或縱)坐標相同的點的連線與坐標軸的關(guān)系的探究;
2、坐標軸上點的坐標有什么特點的總結(jié)。
三、教學(xué)過程設(shè)計
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課
同學(xué)們,你們喜歡旅游嗎?假如你到了某一個城市旅游,那么你應(yīng)怎樣確定旅游景點的位置呢?下面給出一張某市旅游景點的示意圖,根據(jù)示意圖(圖5— 6),回答以下問題:
(1)你是怎樣確定各個景點位置的?
。2)“大成殿”在“中心廣場”南、西各多少個格?“碑林”在“中心廣場”北、東各多少個格?
。3)如果以“中心廣場”為原點作兩條互相垂直的數(shù)軸,分別取向右、向上的方向為數(shù)軸的正方向,一個方格的邊長看做一個單位長度,那么你能表示“碑林”的位置嗎?“大成殿”的位置呢?
在上一節(jié)課,我們已經(jīng)學(xué)習(xí)了許多確定位置的方法,這個問題中,大家看用哪種方法比較合適?
第二環(huán)節(jié)分類討論,探索新知
1、平面直角坐標系、橫軸、縱軸、橫坐標、縱坐標、原點的定義和象限的劃分。
學(xué)生自學(xué)課本,理解上述概念。
2、例題講解
(出示投影)例1
例1寫出圖中的多邊形ABCDEF各頂點的.坐標。
3.2平面直角坐標系:課后練習(xí)
一、選擇題(共9小題,每小題3分,滿分27分)
1、若點A(﹣2,n)在x軸上,則點B(n﹣1,n+1)在()
A、第四象限B、第三象限C、第二象限D(zhuǎn)、第一象限
【考點】點的坐標。
【專題】計算題。
【分析】由點在x軸的條件是縱坐標為0,得出點A(﹣2,n)的n=0,再代入求出點B的坐標及象限。
【解答】解:∵點A(﹣2,n)在x軸上,
∴n=0,
∴點B的坐標為(﹣1,1)。
則點B(n﹣1,n+1)在第二象限。
故選C。
【點評】本題主要考查點的坐標問題,解決本題的關(guān)鍵是掌握好四個象限的點的坐標的特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負。
2、已知點M到x軸的距離為3,到y(tǒng)軸的距離為2,且在第三象限。則M點的坐標為()
A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)
【考點】點的坐標。
【分析】根據(jù)到坐標軸的距離判斷出橫坐標與縱坐標的長度,再根據(jù)第三象限的點的坐標特征解答。
【解答】解:∵點M到x軸的距離為3,
∴縱坐標的長度為3,
∵到y(tǒng)軸的距離為2,
∴橫坐標的長度為2,
∵點M在第三象限,
∴點M的坐標為(﹣2,﹣3)。
故選D。
【點評】本題考查了點的坐標,難點在于到y(tǒng)軸的距離為橫坐標的長度,到x軸的距離為縱坐標的長度,這是同學(xué)們?nèi)菀谆煜鴮?dǎo)致出錯的地方。
3.2平面直角坐標系同步測試題
1.點A(3,—1)其中橫坐標為XX,縱坐標為XX。
2.過B點向x軸作垂線,垂足點坐標為—2,向y軸作垂線,垂足點坐標為5,則點B的坐標為。
3.點P(—3,5)到x軸距離為XX,到y(tǒng)軸距離為XX。
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 9
[教學(xué)目標]
1. 認識平面直角坐標系,了解點的坐標的意義,會用坐標表示點,能畫出點的坐標位
2. 滲透對應(yīng)關(guān)系,提高學(xué)生的數(shù)感.
[教學(xué)重點與難點]
重點:平面直角坐標系和點的坐標.
難點:正確畫坐標和找對應(yīng)點.
[教學(xué)設(shè)計]
一.利用已有知識,引入
1.如圖,怎樣說明數(shù)軸上點A和點B的位置,
2.根據(jù)下圖,你能正確說出各個象棋子的位置嗎?
二.明確概念
平面直角坐標系:平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系(rectangular coordinate system).水平的數(shù)軸稱為x軸(x-axis)或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸為y軸(y-axis)或縱軸,取向上方向為
由數(shù)軸的表示引入,到兩個數(shù)軸和有序數(shù)對。
從學(xué)生熟悉的物品入手,引申到平面直角坐標系。
描述平面直角坐標系特征和畫法
正方向;兩個坐標軸的交點為平面直角坐標系的原點。
點的坐標:我們用一對有序數(shù)對表示平面上的`點,這對數(shù)叫坐標。表示方法為(a,b).a是點對應(yīng)橫軸上的數(shù)值,b是點在縱軸上對應(yīng)的數(shù)值。
例1 寫出圖中A、B、C、D點的坐標。
建立平面直角坐標系后,平面被坐標軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。
你能說出例1中各點在第幾象限嗎?
例2 在平面直角坐標系中描出下列各點。
()A(3,4);B(-1,2);C(-3,-2);D(2,-2)
問題1:各象限點的坐標有什么特征?
練習(xí):教材49頁:練習(xí)1,2。
三.深入探索
教材48頁:探索:
識別坐標和點的位置關(guān)系,以及由坐標判斷兩點的關(guān)系以及兩點所確定的直線的位置關(guān)系。
[鞏固練習(xí)]
1. 教材49頁習(xí)題6.1——第1題
2. 教材50頁——第2,4,5,6。
[小結(jié)]
1. 平面直角坐標系;
2. 點的坐標及其表示
3. 各象限內(nèi)點的坐標的特征
4. 坐標的簡單應(yīng)用
[作業(yè)]
必做題:教科書50頁:3題
。ń滩51頁綜合運用7,8,9,10為練習(xí)課內(nèi)容)
明確點的坐標的表示法
仿照例題,畫坐標軸,描點,要求能正確畫平面直角坐標系
通過探究,發(fā)現(xiàn)坐標不但能代表點的位置,而且能反映他所在的直線的特征
八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計 10
教學(xué)目標:
1.理解平面直角坐標系中的伸縮變換;
2.了解在平面直角坐標系伸縮變換作用下平面圖形的變化情況;
3.會用坐標變換、伸縮變換解決實際問題,體驗用數(shù)學(xué)知識解釋生活問題的樂趣。
教學(xué)重點:
理解平面直角坐標系中的伸縮變換。
教學(xué)難點:
會用坐標變換、伸縮變換解決實際問題。
授課類型:
新授課
教學(xué)過程:
一.復(fù)習(xí)引入
在三角函數(shù)圖象的學(xué)習(xí)中,我們研究過下面一些問題:
。1)怎樣由正弦曲線y=sinx得到曲線y=sin2x和y=sin?
(2)怎樣由正弦曲線y=sinx得到曲線y=2sinx和y=sinx?
作圖:
二.新課講解
引導(dǎo),觀察啟發(fā)與y=sinx的圖象作比較,結(jié)論:
1.函數(shù)y=sinωx,x?R(ω>0且ω11)的圖象,可看作把正弦曲線上所有點的橫坐標縮短(ω>1)或伸長(0<ω<1)到原來的倍(縱坐標不變)。
2.y=Asinx,x?R(A>0且A11)的圖象可以看作把正數(shù)曲線上的所有點的縱坐標伸長(A>1)或縮短(0設(shè)P(x,y)是平面直角坐標系中的任意一點,保持縱坐標y不變,將橫坐標x縮為原來的倍,得到P’(x’,y’),那么 ①
我們把①式叫做平面直角坐標系中的一個坐標壓縮變換。
設(shè)P(x,y)是平面直角坐標系中的任意一點,保持橫坐標x不變,將縱坐標y伸長為原來的2倍,得到P’(x’,y’),那么 ②
我們把②式叫做平面直角坐標系中的一個坐標伸長變換。
提出問題:怎樣由正弦曲線得到曲線y=2sin2x?(它是由①②兩種變換合成的)
平面直角坐標系中的任意一點P(x,y),經(jīng)過上述變換后變?yōu)辄cP’(x’,y’),那么 ③
我們把③式叫做平面直角坐標系中的'坐標伸縮變換。
定義:設(shè)P(x,y)是平面直角坐標系中的任意一點,在變換 ④的作用下,點P(x,y)對應(yīng)到點P’(x’,y’),稱為平面直角坐標系中的坐標伸縮變換,簡稱伸縮變換。
三.例題講解
例1在平面直角坐標系中,求下列方程所對應(yīng)的圖形經(jīng)過伸縮變換后的圖形。
。1)2x+3y=0
(2)x2+y2=1
四.課堂練習(xí)
課本P8第4題
五.課堂小結(jié)
設(shè)P(x,y)是平面直角坐標系中的任意一點,在變換 ④的作用下,點P(x,y)對應(yīng)到點P’(x’,y’),稱為平面直角坐標系中的坐標伸縮變換,簡稱伸縮變換。
【八年級數(shù)學(xué)《平面直角坐標系》教學(xué)設(shè)計】相關(guān)文章:
八年級數(shù)學(xué)《平面直角坐標系2》教學(xué)設(shè)計05-10
《平面直角坐標系》優(yōu)秀教案11-13
Excel表格怎么制作平面直角坐標系07-15
認識直角數(shù)學(xué)教學(xué)設(shè)計08-17
Excel表格中如何制作平面直角坐標系10-27
《平面直角坐標系》八年級數(shù)學(xué)教案(通用9篇)09-02
Excel表格中怎么制作平面直角坐標系05-20
2015第七章平面直角坐標系教案10-14