色www,五月婷婷深爱五月,午夜国产一级片,色噜噜综合,国产大胸无码视频,清纯美女被操黄网站在线观看,波多野结衣av高清一区二区三区

高中數(shù)學說課稿

時間:2021-08-03 17:21:05 高中說課稿 我要投稿

有關(guān)高中數(shù)學說課稿集錦十篇

  在教學工作者實際的教學活動中,常常需要準備說課稿,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。我們應(yīng)該怎么寫說課稿呢?下面是小編幫大家整理的高中數(shù)學說課稿10篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

有關(guān)高中數(shù)學說課稿集錦十篇

高中數(shù)學說課稿 篇1

  各位評委,老師們:大家好!

  很高興參加這次說課活動。這對我來說也是一次難得的學習和鍛煉的機會,感謝各位老師在百忙之中來此予以指導(dǎo)。希望各位評委和老師們對我的說課內(nèi)容提出寶貴意見。

  我說課的內(nèi)容是<平面向量>的教學,所用的教材是人民教育出版社出版的全日制普通高級中學教科書(試驗修訂本—必修)<數(shù)學>第一冊下,教學內(nèi)容為第96頁至98頁第五章第一節(jié)。本校是浙江省一級重點中學,學生基礎(chǔ)相對較好。我在進行教學設(shè)計時,也充分考慮到了這一點。

  下面我從教材分析,教學目標的確定,教學方法的選擇和教學過程的設(shè)計四個方面來匯報我對這節(jié)課的教學設(shè)想。

  一說教材

 。1)地位和作用

  向量是近代數(shù)學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運算(運算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實際背景,在數(shù)學和物理學科中具有廣泛的應(yīng)用。

  平面向量的基本概念是在學生了解了物理學中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進一步對向量的深入學習。為學習向量的知識體系奠定了知識和方法基礎(chǔ)。

 。2)教學結(jié)構(gòu)的調(diào)整

  課本在這一部分內(nèi)容的教學為一課時,首先從小船航行的距離和方向兩個要素出發(fā),抽象出向量的概念,并重點說明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程。在教學中我將教學的順序做如下的調(diào)整:將本節(jié)教學中認知過程的教學內(nèi)容適當集中,以突出這節(jié)課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成。

 。3)重點,難點,關(guān)鍵

  由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學生學習本章的基礎(chǔ)。為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點。本節(jié)課是為高一后半學期學生設(shè)計的,盡管此時的學生已經(jīng)有了一定的學習方法和習慣,但根據(jù)以往的教學經(jīng)驗,多數(shù)學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節(jié)課的難點。而解決這一難點的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解。

  二說教學目標的確定

  根據(jù)本課教材的特點,新大綱對本節(jié)課的教學要求,學生身心發(fā)展的合理需要,我從三個方面確定了以下教學目標:

 。1)基礎(chǔ)知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據(jù)圖形判定向量是否平行,共線,相等。

  (2)能力訓練目標:培養(yǎng)學生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學生觀察問題,分析問題,解決問題的能力。

 。3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。

  三說教學方法的選擇

 、窠虒W方法

  本節(jié)課我采用了”啟發(fā)探究式的教學方法,根據(jù)本課教材的特點和學生的實際情況在教學中突出以下兩點:

  (1)由教材的特點確立類比思維為教學的主線。

  從教材內(nèi)容看平面向量無論從形式還是內(nèi)容都與物理學中的有向線段,矢量的概念類似。因此在教學中運用類比作為思維的主線進行教學。讓學生充分體會數(shù)學知識與其他學科之間的聯(lián)系以及發(fā)生與發(fā)展的過程。

 。2)由學生的特點確立自主探索式的學習方法

  通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發(fā)學生的學習興趣,另外,學生都有表現(xiàn)自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情?紤]到我校學生的基礎(chǔ)較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創(chuàng)設(shè)問題情境,啟發(fā)引導(dǎo)學生運用科學的思維方法進行自主探究。將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用。

 、蚪虒W手段

  本節(jié)課中,除使用常規(guī)的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數(shù)形結(jié)合思想,更易于對概念的理解和難點的突破。

  四教學過程的設(shè)計

 、裰R引入階段———提出學習課題,明確學習目標

 。1)創(chuàng)設(shè)情境——引入概念

  數(shù)學學習應(yīng)該與學生的生活融合起來,從學生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學、探究數(shù)學、認識并掌握數(shù)學。

  由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學生思維活躍,想象力豐富的特點,有利于激發(fā)學生的學習興趣。

 。2)觀察歸納——形成概念

  由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的起點,方向和長度,它的終點就唯一確定。再有目的的進行設(shè)計,引導(dǎo)學生概括總結(jié)出本課新的知識點:向量的概念及其幾何表示。

 。3)討論研究——深化概念

  在得到概念后進行歸納,深化,之后向?qū)W生提出以下三個問題:

 、傧蛄康囊厥鞘裁?

 、谙蛄恐g能否比較大小?

 、巯蛄颗c數(shù)量的區(qū)別是什么?

  同時指出這就是本節(jié)課我們要研究和學習的主題。

 、蛑R探索階段———探索平面向量的平行向量。相等向量等概念

 。1)總結(jié)反思——提高認識

  方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

 。2)即時訓練—鞏固新知

  為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設(shè)計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識。

 。劬毩1]判斷下列命題是否正確,若不正確,請簡述理由.

 、傧蛄颗c是共線向量,則A、B、C、D四點必在一直線上;

  ②單位向量都相等;

 、廴我幌蛄颗c它的相反向量不相等;

  ④四邊形ABCD是平行四邊形的充要條件是=;

  ⑤模為0是一個向量方向不確定的充要條件;

 、薰簿的向量,若起點不同,則終點一定不同.

 。劬毩2]下列命題正確的是( )

  A.a(chǎn)與b共線,b與c共線,則a與c也共線

  B.任意兩個相等的非零向量的始點與終點是一平行四邊形的四頂點

  C.向量a與b不共線,則a與b都是非零向量

  D.有相同起點的兩個非零向量不平行

  Ⅲ知識應(yīng)用階段————共線向量,相等向量等概念的初步應(yīng)用

  在本階段的教學中,我采用的是課本上一道典型的例題:在一個復(fù)雜圖形中觀察,辨認平行,相等的有向線段。選用本題的目的是讓學生進行獨立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點的突破。

  例如圖所示,設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)

  具體教學安排如下:

  (1)分析解決問題

  先引導(dǎo)學生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實質(zhì):兩個向量只有當它們的模相等,同時方向又相同時,才能稱它們相等。進而進行正確的辨認,直至最終解決問題。

  (2)歸納解題方法

  主要引導(dǎo)學生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相

  等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。

  Ⅳ學習,小結(jié)階段———歸納知識方法,布置課后作業(yè)

  本階段通過學習小結(jié)進行課堂教學的反饋,組織和指導(dǎo)學生歸納知識,技能,方法的一般規(guī)律,為后續(xù)學習打好基礎(chǔ)。

  具體的教學安排如下:

  (1)知識,方法小結(jié)在知識層面上我首先引導(dǎo)學生回顧本節(jié)課的主要內(nèi)容,提醒學生要抓住向量的本質(zhì):大小與方向,對它們進行類比,加深對每個概念的理解。

  在方法層面上我將帶領(lǐng)學生回顧探索過程中用到的思維方法和數(shù)學方法如:

  類比,數(shù)形結(jié)合,等價轉(zhuǎn)化等進行強調(diào)。

  (2)布置課后作業(yè)

  閱讀教材96至97頁內(nèi)容,整理課堂筆記,習題5。1第1,2,3題。

高中數(shù)學說課稿 篇2

  函數(shù)的單調(diào)性

  今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、教學過程五方面逐一加以分析和說明。

  一、說教材

  1、教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學的課程,它是描述事物運動變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學習奠定重要基礎(chǔ)。

  2、學情分析

  本節(jié)課的學生是高一學生,他們在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學習已經(jīng)對函數(shù)的增減性有了初步的感性認識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學生的理性思維,為后續(xù)函數(shù)的學習作準備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識奠定了基礎(chǔ)。

  教學目標分析

  基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

  1.知識與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;

 。2)會判斷和證明簡單函數(shù)的單調(diào)性。

  2.過程與方法

 。1)培養(yǎng)從概念出發(fā),進一步研究性質(zhì)的意識及能力;

  (2)體會數(shù)形結(jié)合、分類討論的數(shù)學思想。

  3.情感態(tài)度與價值觀

  由合適的例子引發(fā)學生探求數(shù)學知識的欲望,突出學生的主觀能動性,激發(fā)學生學習數(shù)學的興趣。

  三、教學重難點分析

  通過以上對教材和學生的分析以及教學目標,我將本節(jié)課的重難點

  重點:

  函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性。

  難點:

  1.函數(shù)單調(diào)性概念的認知

 。1)自然語言到符號語言的轉(zhuǎn)化;

 。2)常量到變量的轉(zhuǎn)化。

  2.應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。

  四、教法與學法分析

  1、教法分析

  基于以上對教材、學情的分析以及新課標的教學理念,本節(jié)課我采用啟發(fā)式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數(shù)學在生活中的應(yīng)用,啟發(fā)式教學和討論法發(fā)散學生思維,培養(yǎng)學生善于思考的能力。

  2、學法分析

  新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學生通過合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。

  五、教學過程

  為了更好的實現(xiàn)本課的三維目標,并突破重難點,我設(shè)計以下五個環(huán)節(jié)來進行我的教學。

 。ㄒ唬┲R導(dǎo)入

  溫故而知新,我將先從之前學習的知識引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學生作出這些函數(shù)的圖像,然后讓學生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個過程中不僅可以檢查學生掌握基本初等函數(shù)圖像的情況,而且符合學生的認知結(jié)構(gòu),通過學生自主探究,從知識產(chǎn)生、發(fā)展的過程中構(gòu)建新概念,有利于激發(fā)學生的思維和學習的積極主動性。

  (二)講授新課

  1.問題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個區(qū)間是上升的,在哪個區(qū)間是下降的?

  通過學生熟悉的圖像,及時引導(dǎo)學生觀察,函數(shù)圖像上A點的運動情況,引導(dǎo)學生能用自然語言描述出,隨著x增大時圖像變化規(guī)律。讓學生大膽的去說,老師逐步修正、完善學生的說法,最后給出正確答案。

  2.觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問題:

 。1)在y軸的右側(cè)部分圖象具有什么特點?

 。2)如果在y軸右側(cè)部分取兩個點(x1,y1),(x2,y2),當x1

 。3)如何用數(shù)學符號語言來描述這個規(guī)律?

  教師補充:這時我們就說函數(shù)y=x2在(0,+∞)上是增函數(shù)。

  (4)反過來,如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?

  類似地分析圖象在y軸的左側(cè)部分。

  通過對以上問題的分析,從正、反兩方面領(lǐng)會函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當x1

  仿照單調(diào)增函數(shù)定義,由學生說出單調(diào)減函數(shù)的定義。

  教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個區(qū)間上的局部性質(zhì),也就是說,一個函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

  (我將給出函數(shù)y=x2,并畫出這個函數(shù)的圖像,讓學生觀察函數(shù)圖像的特點,讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個過程中,學生把對圖像的感性認識轉(zhuǎn)化為了數(shù)學關(guān)系,這種從特殊到一般的學習過程有利于學生對概念的理解)

 。ㄈ╈柟叹毩

  1練習1:說出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x

  練習2:練習2:判斷下列說法是否正確

 、俣x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。

  ②定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。

  1③已知函數(shù)y=,因為f(-1)

  1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x

  上的單調(diào)性。通過這種練習的方式,幫助學生鞏固對知識的掌握。

 。ㄋ模w納總結(jié)

  我先讓學生進行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,為下一節(jié)課的教學過程做好準備。

 。ㄎ澹┎贾米鳂I(yè)

  必做題:習題2-3A組第2,4,5題。

  選做題:習題2-3B組第2題。

  新課程理念告訴我們,不同的人在數(shù)學上可以獲得不同的發(fā)展,因此要設(shè)計不同程度要求的習題。

  篇二:高一數(shù)學必修一說課稿

  二次函數(shù)的圖像說課稿

  今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設(shè)計五方面逐一加以分析和說明。

  一、教材分析

  教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。

  學情分析

  本節(jié)課的學生是高一學生,他們在初中的時候已經(jīng)學習過有關(guān)內(nèi)容,為本節(jié)課的學習打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學生對二次函數(shù)的圖像由感性認識上升到理性認識,能培養(yǎng)學生利用數(shù)形結(jié)合思想解決問題的能力。

  二、教學目標分析

  基于以上對教材和學情的分析以及新課標教學理念,我將教學目標分為以下三個部分:

  1.知識與技能

  理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響;

  2.過程與方法

  通過體驗對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。

  3.情感態(tài)度與價值觀

  通過本節(jié)的學習,進一步體會數(shù)形結(jié)合思想的作用,感受到數(shù)學中數(shù)與形的辯證統(tǒng)一。

  三、教學重難點分析

  通過以上對教材和學生的分析以及教學目標,我將本節(jié)課的重難點確定如下

  重點:

  二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。

  難點:

  探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。

  四、教法與學法分析

  1、教法分析

  基于以上對教材、學情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學、多媒體輔助教學和討論法。學生可以在多媒體中感受到數(shù)學在生活中的應(yīng)用,啟發(fā)式教學和討論法發(fā)散學生思維,培養(yǎng)學生善于思考的能力。

  2、學法分析

  新課改理念告訴我們,學生不僅要學知識,更重要的是要學會怎樣學習,為終生學習奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學生通過合作交流、自主探索的方法進行學習。

  五、教學過程

  為了更好的實現(xiàn)本課的三維目標,并突破重難點,我將設(shè)計以下五個環(huán)節(jié)來進行我的教學。

 。1)知識導(dǎo)入

  溫故而知新,我將先從之前學習的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學生作出這些函數(shù)的圖像,然后讓學生比較這些函數(shù)圖像的相同點和不同點,由此引入我的新課。一方面讓學生總結(jié)復(fù)習已有知識,為后面的學習做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗。

 。2)講授新課

  例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

  讓學生畫出他們的圖像并觀察函數(shù)圖像的特點,再讓學生與多媒體課件展示的圖像進行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

  前面的練習和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學生將實例的結(jié)論進行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a<0開口向下;h正左移,h負右移;k正上移,k負下移。在這個過程中,學生把對圖像的感性認識轉(zhuǎn)化為了數(shù)學關(guān)系,這種從特殊到一般的學習過程有利于學生對概念的理解,

 。3)鞏固練習

  我將組織學生進行練習,完成課本44頁1-3題。通過這種練習的方式,幫助學生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。

 。4)歸納總結(jié)

  我先讓學生進行小結(jié),然后教師進行補充,在這樣一個過程中既有利于學生鞏固知識,也有利于教師對學生的學習情況有一定的了解,可以進行適當反思,為下一節(jié)課的教學過程做好準備。

 。5)布置作業(yè)

  略

高中數(shù)學說課稿 篇3

  各位評委老師好:今天我說課的題目是

  是必修章第節(jié)的內(nèi)容,我將以新課程標準的理念指導(dǎo)本節(jié)課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。

  一、 教材分析

  是在學習了基礎(chǔ)上進一步研究 并為后面學習 做準備,在整個高中數(shù)學中起著承上啟下的作用,因此本節(jié)內(nèi)容十分重要。

  根據(jù)新課標要求和學生實際水平我制定以下教學目標

  1、 知識能力目標:使學生理解掌握

  2、 過程方法目標:通過觀察歸納抽象概括使學生構(gòu)建領(lǐng)悟 數(shù)學思想,培養(yǎng) 能力

  3、 情感態(tài)度價值觀目標:通過學習體驗數(shù)學的科學價值和應(yīng)用價值,培養(yǎng)善于

  觀察勇于思考的學習習慣和嚴謹 的科學態(tài)度

  根據(jù)教學目標、本節(jié)特點和學生實際情況本節(jié)重點是 ,由于學生對 缺少感性認識,所以本節(jié)課的重點是

  二、教法學法

  根據(jù)教師主導(dǎo)地位和學生主體地位相統(tǒng)一的規(guī)律,我采用引導(dǎo)發(fā)現(xiàn)法為本節(jié)課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。

  三、 教學過程

  1、由……引入:

  把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經(jīng)驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。

  對于本題:……

  2、由實例得出本課新的知識點是:……

  3、講解例題。

  我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:

  4、能力訓練。

  課后練習……

  使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

  5、總結(jié)結(jié)論,強化認識。

  知識性內(nèi)容的小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì);數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應(yīng)用,并且逐漸培養(yǎng)學生的良好的個性品質(zhì)目標。

  6、變式延伸,進行重構(gòu)。

  重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián)、累積、加工,從而達到舉一反三的效果。

  四、教學評價

  學生學習的學習結(jié)果評價當然重要,但是更重要的是學生學習的過程評價,教師應(yīng)當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數(shù)學能力的發(fā)現(xiàn),以及學習的興趣和成就感。

高中數(shù)學說課稿 篇4

  一、教學背景分析

  1、教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學習,無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。

  2、學情分析

  圓的方程是學生在初中學習了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現(xiàn)困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學目標:

  3、教學目標

  (1) 知識目標:①掌握圓的標準方程;

 、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;

 、劾脠A的標準方程解決簡單的實際問題。

  (2) 能力目標:①進一步培養(yǎng)學生用代數(shù)方法研究幾何問題的能力;

 、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

 、墼鰪妼W生用數(shù)學的意識。

  (3) 情感目標:①培養(yǎng)學生主動探究知識、合作交流的意識;

 、谠隗w驗數(shù)學美的過程中激發(fā)學生的學習興趣。

  根據(jù)以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

  4、教學重點與難點

  (1)重點:圓的標準方程的求法及其應(yīng)用。

  (2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;

 、谶x擇恰當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題。

  為使學生能達到本節(jié)設(shè)定的教學目標,我再從教法和學法上進行分析:

  二、教法學法分析

  1、教法分析 為了充分調(diào)動學生學習的積極性,本節(jié)課采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發(fā)展區(qū)上。另外我恰當?shù)睦枚嗝襟w課件進行輔助教學,借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學生的學習興趣,又直觀的引導(dǎo)了學生建模的過程。

  2、學法分析 通過推導(dǎo)圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標準方程,熟悉用待定系數(shù)法求的過程。

  下面我就對具體的教學過程和設(shè)計加以說明:

  三、教學過程與設(shè)計

  整個教學過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學程序與設(shè)計意圖。

  首先:縱向敘述教學過程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。

  (二)深入探究——獲得新知

  問題二 1、根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2、如果圓心在,半徑為時又如何呢?

  這一環(huán)節(jié)我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導(dǎo)學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預(yù)設(shè)了三種方法等待著學生的探究結(jié)果,分別是:坐標法、圖形變換法、向量平移法。

  得到圓的標準方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié)。

  (三)應(yīng)用舉例——鞏固提高

  I、直接應(yīng)用 內(nèi)化新知

  問題三 1、寫出下列各圓的標準方程:

  (1)圓心在原點,半徑為3;

  (2)經(jīng)過點,圓心在點。

  2、寫出圓的圓心坐標和半徑。

  我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線問題作準備。

  II、靈活應(yīng)用 提升能力

  問題四 1、求以點為圓心,并且和直線相切的圓的方程。

  2、求過點,圓心在直線上且與軸相切的圓的方程。

  3、已知圓的方程為,求過圓上一點的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

  我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導(dǎo)學生應(yīng)用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮。

  III、實際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學生形成解決實際問題的一般方法,培養(yǎng)了學生建模的習慣和用數(shù)學的意識。

  (四)反饋訓練——形成方法

  問題六 1、求過原點和點,且圓心在直線上的圓的標準方程。

  2、求圓過點的切線方程。

  3、求圓過點的切線方程。

  接下來是第四環(huán)節(jié)——反饋訓練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數(shù)學的樂趣,成功的喜悅,找到自信,增強學習數(shù)學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導(dǎo)學生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學生思維的嚴謹性具有良好的效果。

  (五)小結(jié)反思——拓展引申

  1、課堂小結(jié)

  把圓的標準方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

 、賵A心為,半徑為r 的圓的標準方程為:

  圓心在原點時,半徑為r 的圓的標準方程為:。

 、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:。

  2、分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。

  3、激發(fā)新疑

  問題七 1、把圓的標準方程展開后是什么形式?

  2、方程表示什么圖形?

  在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設(shè)計:

  橫向闡述教學設(shè)計

  (一)突出重點 抓住關(guān)鍵 突破難點

  求圓的標準方程既是本節(jié)課的教學重點也是難點,為此我布設(shè)了由淺入深的學習環(huán)境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。

  第二個教學難點就是解決實際應(yīng)用問題,這是學生固有的難題,主要是因為應(yīng)用問題的題目冗長,學生很難根據(jù)問題情境構(gòu)建數(shù)學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學生真正走入問題的情境之中,并從中抽象出數(shù)學模型,從而消除畏難情緒,增強了信心。最后再形成應(yīng)用圓的標準方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學生在解決問題的同時,形成了方法,難點自然突破。

  (二)學生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設(shè)立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學習任務(wù)。

  (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新

  為了培養(yǎng)學生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學習思路,培養(yǎng)學生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學生的創(chuàng)新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節(jié)課的教學預(yù)設(shè),具體的教學過程還要根據(jù)學生在課堂中的具體情況適當調(diào)整,向生成性課堂進行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

高中數(shù)學說課稿 篇5

  尊敬的各位專家、評委:

  大家好!

  我是盧龍縣木井中學數(shù)學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數(shù)學必修5第一章第一節(jié)的第一課時《正弦定理》,依據(jù)新課程標準對教材的要求,結(jié)合我對教材的理解,我將從以下幾個方面說明我的設(shè)計和構(gòu)思。

  一、教材分析

  “解三角形”既是高中數(shù)學的基本內(nèi)容,又有較強的應(yīng)用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學習,讓學生從“實際問題”抽象成“數(shù)學問題”的建模過程中,體驗 “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時在解決問題的過程中,感受數(shù)學的力量,進一步培養(yǎng)學生對數(shù)學的學習興趣和“用數(shù)學”的意識。

  二、學情分析

  我所任教的學校是我縣一所農(nóng)村普通中學,大多數(shù)學生基礎(chǔ)薄弱,對“一些重要的數(shù)學思想和數(shù)學方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學生對數(shù)學的興趣較高,比較喜歡數(shù)學,尤其是象本節(jié)課這樣與實際生活聯(lián)系比較緊密的內(nèi)容,相信學生能夠積極配合,有比較不錯的表現(xiàn)。

  三、教學目標

  1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。

  過程與方法:學生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學生對現(xiàn)實世界的一些數(shù)學模型進行思考。

  情感、態(tài)度、價值觀:培養(yǎng)學生合情合理探索數(shù)學規(guī)律的數(shù)學思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數(shù)學學習興趣和主動性,鍛煉探究精神。樹立“數(shù)學與我有關(guān),數(shù)學是有用的,我要用數(shù)學,我能用數(shù)學”的理念。

  2、教學重點、難點

  教學重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

  教學難點:正弦定理證明及應(yīng)用。

  四、教學方法與手段

  為了更好的達成上面的教學目標,促進學習方式的轉(zhuǎn)變,本節(jié)課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導(dǎo)學生采取自主探究與相互合作相結(jié)合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結(jié)構(gòu)。

  五、教學過程

  為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設(shè)計了這樣的教學過程:

  (一)創(chuàng)設(shè)情景,揭示課題

  問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?

  1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?

  問題2:在現(xiàn)在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

  [設(shè)計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學生學習本章知識的興趣。

  (二)特殊入手,發(fā)現(xiàn)規(guī)律

  問題3:在初中,我們已經(jīng)學習了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?

  引導(dǎo)啟發(fā)學生發(fā)現(xiàn)特殊情形下的正弦定理

  (三)類比歸納,嚴格證明

  問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結(jié)論還成立嗎?

  [設(shè)計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結(jié)組研究,鼓勵學生用不同的方法證明這個結(jié)論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導(dǎo)提示學生能否用向量完成證明。

  問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結(jié)論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導(dǎo)學生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學生用向量法完成證明。)

  [設(shè)計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數(shù)學的實踐中去感悟和提高數(shù)學的思維方法和思維習慣。同時,考慮到有部分同學基礎(chǔ)較差,考個人或小組可能無法完成探究任務(wù),教師在學生動手的同時,通過巡查,讓提前證明出結(jié)論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。

  問題6:由此,你能否得到一個更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內(nèi)容)

  教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學美的結(jié)論,不能不說也是人類數(shù)學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數(shù)學家的老師了。當然,老師的希望能否變成現(xiàn)實,就要看大家的了。

  [設(shè)計說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學史的內(nèi)容,對學生不僅有數(shù)學美得熏陶,更能激發(fā)學生學習科學文化知識的熱情。

  (四)強化理解,簡單應(yīng)用

  下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。

  [設(shè)計說明] 讓學生看看書,放慢節(jié)奏,有利于學生消化和吸收剛才的內(nèi)容,同時教師可以利用這段時間對個別學困生進行輔導(dǎo),以減少掉隊的同學數(shù)量,同時培養(yǎng)學生養(yǎng)成自覺看書的好習慣。

  我們學習了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:

  問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據(jù)學生實踐中發(fā)現(xiàn)的問題給予必要的講評)

  [設(shè)計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創(chuàng)造條件。

  強化練習

  讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。

  問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [設(shè)計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導(dǎo)學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進一步討論》

  (五)小結(jié)歸納,深化拓展

  1、正弦定理

  2、正弦定理的證明方法

  3、正弦定理的應(yīng)用

  4、涉及的數(shù)學思想和方法。

  [設(shè)計說明] 師生共同總結(jié)本節(jié)課的收獲的同時,引導(dǎo)學生學會自己總結(jié),讓學生進一步回顧和體會知識的形成、發(fā)展、完善的過程。

  (六)布置作業(yè),鞏固提高

  1、教材10頁習題1.1A組第1題。

  2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。

  證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

  [設(shè)計說明] 對不同水平的學生設(shè)計不同梯度的作業(yè),尊重學生的個性差異,有利于因材施教的教學原則的貫徹。

高中數(shù)學說課稿 篇6

  【一】教學背景分析

  1.教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學第二冊(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學習,無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用.

  2.學情分析

  圓的方程是學生在初中學習了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現(xiàn)困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學目標:

  3.教學目標

  (1) 知識目標:①掌握圓的標準方程;

  ②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;

  ③利用圓的標準方程解決簡單的實際問題.

  (2) 能力目標:①進一步培養(yǎng)學生用代數(shù)方法研究幾何問題的能力;

 、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

 、墼鰪妼W生用數(shù)學的意識.

  (3) 情感目標:①培養(yǎng)學生主動探究知識、合作交流的意識;

  ②在體驗數(shù)學美的過程中激發(fā)學生的學習興趣.

  根據(jù)以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

  4. 教學重點與難點

  (1)重點:圓的標準方程的求法及其應(yīng)用.

  (2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;

 、谶x擇恰當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題.

  為使學生能達到本節(jié)設(shè)定的教學目標,我再從教法和學法上進行分析:

  好學教育:

  【二】教法學法分析

  1.教法分析 為了充分調(diào)動學生學習的積極性,本節(jié)課采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發(fā)展區(qū)上.另外我恰當?shù)睦枚嗝襟w課件進行輔助教學,借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學生的學習興趣,又直觀的引導(dǎo)了學生建模的過程.

  2.學法分析 通過推導(dǎo)圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應(yīng)用圓的標準方程,熟悉用待定系數(shù)法求的過程. 下面我就對具體的教學過程和設(shè)計加以說明:

  【三】教學過程與設(shè)計

  整個教學過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學程序與設(shè)計意圖.

  首先:縱向敘述教學過程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創(chuàng)設(shè)問題情境,讓學生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

  通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié).

  (二)深入探究——獲得新知

  問題二 1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2.如果圓心在,半徑為時又如何呢?

  好學教育:

  這一環(huán)節(jié)我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導(dǎo)學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預(yù)設(shè)了三種方法等待著學生的探究結(jié)果,分別是:坐標法、圖形變換法、向量平移法.

  得到圓的標準方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié).

  (三)應(yīng)用舉例——鞏固提高

  I.直接應(yīng)用 內(nèi)化新知

  問題三 1.寫出下列各圓的標準方程:

  (1)圓心在原點,半徑為3;

  (2)經(jīng)過點,圓心在點.

  2.寫出圓的圓心坐標和半徑.

  我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線問題作準備.

  II.靈活應(yīng)用 提升能力

  問題四 1.求以點為圓心,并且和直線相切的圓的方程.

  2.求過點,圓心在直線上且與軸相切的圓的方程.

  3.已知圓的方程為,求過圓上一點的切線方程.

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

  我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導(dǎo)學生應(yīng)用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮.

  III.實際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

  好學教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學生形成解決實際問題的一般方法,培養(yǎng)了學生建模的習慣和用數(shù)學的意識.

  (四)反饋訓練——形成方法

  問題六 1.求過原點和點,且圓心在直線上的圓的標準方程.

  2.求圓過點的切線方程.

  3.求圓過點的切線方程.

  接下來是第四環(huán)節(jié)——反饋訓練.這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數(shù)學的樂趣,成功的喜悅,找到自信,增強學習數(shù)學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導(dǎo)學生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學生思維的嚴謹性具有良好的效果.

  (五)小結(jié)反思——拓展引申

  1.課堂小結(jié)

  把圓的標準方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點時,半徑為r 的圓的標準方程為:.

 、谝阎獔A的方程是,經(jīng)過圓上一點的切線的方程是:.

  2.分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程.

  3.激發(fā)新疑

  問題七 1.把圓的標準方程展開后是什么形式?

  2.方程表示什么圖形?

  在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準備.

  以上是我縱向的教學過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設(shè)計: 橫向闡述教學設(shè)計

  (一)突出重點 抓住關(guān)鍵 突破難點

  好學教育:

  求圓的標準方程既是本節(jié)課的教學重點也是難點,為此我布設(shè)了由淺入深的學習環(huán)境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點.

  第二個教學難點就是解決實際應(yīng)用問題,這是學生固有的難題,主要是因為應(yīng)用問題的題目冗長,學生很難根據(jù)問題情境構(gòu)建數(shù)學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學生真正走入問題的情境之中,并從中抽象出數(shù)學模型,從而消除畏難情緒,增強了信心.最后再形成應(yīng)用圓的標準方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五.這樣的設(shè)計,使學生在解決問題的同時,形成了方法,難點自然突破.

  (二)學生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學生探究完成的.另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設(shè)立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學習任務(wù).

  (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新

  為了培養(yǎng)學生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學習思路,培養(yǎng)學生的歸納概括能力.在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學生的創(chuàng)新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行.

  以上是我對這節(jié)課的教學預(yù)設(shè),具體的教學過程還要根據(jù)學生在課堂中的具體情況適當調(diào)整,向生成性課堂進行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”.

高中數(shù)學說課稿 篇7

  一、背景分析

  1、學習任務(wù)分析:充要條件是中學數(shù)學中最重要的數(shù)學概念之一,它主要討論了命題的條件與結(jié)論之間的邏輯關(guān)系,目的是為今后的數(shù)學學習特別是數(shù)學推理的學習打下基礎(chǔ)。

  教學重點:充分條件、必要條件和充要條件三個概念的定義。

  2、學生情況分析:從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.因此,新教材在第一章的小結(jié)與復(fù)習中,把學生的學習要求規(guī)定為“初步掌握充要條件”(注意:新教學大綱的教學目標是“掌握充要條件的意義”),這是比較切合教學實際的.由此可見,教師在充要條件這一內(nèi)容的新授教學時,不可拔高要求追求一步到位,而要在今后的教學中滾動式逐步深化,使之與學生的知識結(jié)構(gòu)同步發(fā)展完善。

  教學難點:“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們?nèi)ソ鉀Q具體問題則更為困難,因此”充要條件”的教學成為中學數(shù)學的難點之一,而必要條件的定義又是本節(jié)內(nèi)容的難點.根據(jù)多年教學實踐,學生對”充分條件”的概念較易接受,而必要條件的概念都難以理解.對于“B=A”,稱A是B的必要條件難于接受,A本是B推出的結(jié)論,怎么又變成條件了呢?對這學生難于理解。

  教學關(guān)鍵:找出A、B,根據(jù)定義判斷A=B與B=A是否成立。教學中,要強調(diào)先找出A、B,否則,學生可能會對必要條件難以理解。

  二、教學目標設(shè)計:

 。ㄒ唬┲R目標:

  1、正確理解充分條件、必要條件、充要條件三個概念。

  2、能利用充分條件、必要條件、充要條件三個概念,熟練判斷四種命題間的關(guān)系。

 。ǘ┠芰δ繕耍

  1、培養(yǎng)學生的觀察與類比能力:“會觀察”,通過大量的問題,會觀察其共性及個性。

  2、培養(yǎng)學生的歸納能力:“敢歸納”,敢于對一些事例,觀察后進行歸納,總結(jié)出一般規(guī)律。

  (三)情感目標:

  1、通過以學生為主體的'教學方法,讓學生自己構(gòu)造數(shù)學命題,發(fā)展體驗獲取知識的感受。

  2、通過對命題的四種形式及充分條件,必要條件的相對性,培養(yǎng)同學們的辯證唯物主義觀點。

  3、通過“會觀察”,“敢歸納”,“善建構(gòu)”,培養(yǎng)學生自主學習,勇于創(chuàng)新,多方位審視問題的創(chuàng)造技巧,敢于把錯誤的思維過程及弱點暴露出來,并在問題面前表現(xiàn)出濃厚的興趣和不畏困難、勇于進取的精神。

  三、教學結(jié)構(gòu)設(shè)計:

  數(shù)學知識來源于生活實際,生活本身又是一個巨大的數(shù)學課堂,我在教學過程中注重把教材內(nèi)容與生活實踐結(jié)合起來,加強數(shù)學教學的實踐性,給數(shù)學找到生活的原型。我對本節(jié)課的數(shù)學知識結(jié)構(gòu)進行創(chuàng)造性地“教學加工”,在教學方法上采用了“合作——探索”的開放式教學模式,使課堂教學體現(xiàn)“參與式”、“生活化”、“探索性”,保證學生對數(shù)學知識的主動獲取,促進學生充分、和諧、自主、個性化的發(fā)展。

  整體思路為:教師創(chuàng)設(shè)情境,激發(fā)興趣,引出課題 引導(dǎo)學生分析實例,給出定義 例題分析(采用開放式教學) 知識小結(jié) 擴展例題 練習反饋

  整個教學設(shè)計的主要特色:

 。1)由生活事例引出課題;

  (2)采用開放式教學模式;

 。3)擴展例題是分析生活中的名言名句,又將數(shù)學融入生活中。

  努力做到:“教為不教,學為會學”;要“授之以魚”更要“授之以漁”。

  四、教學媒體設(shè)計:

  本節(jié)課是概念課,要避免單一的下定義作練習模式,應(yīng)該努力使課堂元素更為豐富。這節(jié)課,我借助了多媒體課件,配合教學,添加了一些與例題相匹配的圖片背景,以激發(fā)學生的學習興趣,另外將學生的自編題利用多媒體課件展示出來分析,提高了課堂教學的效率。

  五、教學過程設(shè)計:

  第一,創(chuàng)設(shè)情境,激發(fā)興趣,引出課題:

  考慮到高一學生學習這一章的知識儲備不足,我利用日常生活中的具體事例來提出本課的問題,并與學生共同利用原有的知識分析,事例中包括幾個問題,為后面定義的分析埋下伏筆。

  我用的第一個事例是:“做一件襯衫,需用布料,到布店去買,問營業(yè)員應(yīng)該買多少?他說買3米足夠了!边@樣,就產(chǎn)生了“3米布料”與“做一件襯衫夠不夠”的關(guān)系。用這個事件目的是為了第二部分引導(dǎo)學生得出充分條件的定義。這里要強調(diào)該事件包括:A:有3米布料;B:做一件襯衫夠了。

  第二個事例是:“一人病重,呼吸困難,急診住院接氧氣。”就產(chǎn)生了“氧氣”與“活命與否”的關(guān)系。用這個事件的目的是為了第二部分引導(dǎo)學生得出必要條件的定義。這里要強調(diào)該事件包括:A:接氧氣;B:活了。

  用以上兩個生活中的事例來說明數(shù)學中應(yīng)研究的概念、關(guān)系,會使學生感到親切自然,有助于提高興趣和深入領(lǐng)會概念的內(nèi)容,特別是它的必要性。

  第二,引導(dǎo)學生分析實例,給出定義。

  在第一部分激發(fā)起學生的學習興趣后,緊接著開展第二部分,引導(dǎo)學生分析實例,讓學生從事例中抽象出數(shù)學概念,得出本節(jié)課所要學習的充分條件和必要條件的定義。在引導(dǎo)過程中盡量放慢語速,結(jié)合事例幫助學生分析。

  得出定義之后,這里有必要再利用本課前面兩節(jié)的“邏輯聯(lián)結(jié)詞”和“四種命題”的知識來加強對必要條件定義的理解。(用前面的例子來說即:“活了,則說明在輸氧”)可記作: 。

  還應(yīng)指出的是“必要條件”的定義,有如繞口令,要一次廓清,不可拖泥帶水。這里,只要一下子“定義”清楚了,下邊再解釋“ ,A是B的必要條件”是怎么回事。這樣處理,學生更容易接受“必要”二字。(因無A則無B,故欲有B,A是必要的)。

  當兩個定義分別給出后,我又對它們之間的區(qū)別加以分析說明,(充分條件可能會有多余,浪費,必要條件可能還不足(以使事件B成立))從而順理成章地引出充要條件的定義(既是必要條件,又是充分條件,就稱為充分必要條件,簡稱充要條件,記作: 。(不多不少,恰到好處)。使學生在此先對兩個充分條件和必要條件兩個概念的不同有了第一次的認識,第三部分再利用具體的數(shù)學事例來強化。

高中數(shù)學說課稿 篇8

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數(shù)的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學思想方法,能較好地培養(yǎng)學生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

  (二)教學內(nèi)容

  本節(jié)內(nèi)容分2課時學習。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學中的和諧美,體驗成功的樂趣。

  二、教學目標分析

  根據(jù)教學大綱的要求、本節(jié)教材的特點和高一學生的認知規(guī)律,本節(jié)課的教學目標確定為:

  知識目標——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標——通過看圖象找解集,培養(yǎng)學生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標——創(chuàng)設(shè)問題情景,激發(fā)學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

  三、重難點分析

  一元二次不等式是高中數(shù)學中最基本的不等式之一,是解決許多數(shù)學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。

  要把握這個重點。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點的橫坐標的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關(guān)系。要突破這個難點,讓學生歸納“三個一次”的關(guān)系作鋪墊。

  四、教法與學法分析

  (一)學法指導(dǎo)

  教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導(dǎo)學生學會學習。本節(jié)課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數(shù)學的美,會產(chǎn)生一種成功感,從而提高學生學習數(shù)學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

  (二)教法分析

  本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認知心理學——建構(gòu)主義學習理論。

  建構(gòu)主義學習理論認為:應(yīng)把學習看成是學生主動的建構(gòu)活動,學生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進行學習,可以使學生利用已有知識與經(jīng)驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學法”。把問題作為出發(fā)點,指導(dǎo)學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設(shè)計

  本節(jié)課的教學設(shè)計充分體現(xiàn)以學生發(fā)展為本,培養(yǎng)學生的觀察、概括和探究能力,遵循學生的認知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進和因材施教的教學原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

  (一)創(chuàng)設(shè)情景,引出“三個一次”的關(guān)系

  本節(jié)課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學生的思維興趣。

  為此,我設(shè)計了以下幾個問題:

  1、請同學們解以下方程和不等式:

 、2x-7=0;②2x-7>0;③2x-7<0

  學生回答,我板書

高中數(shù)學說課稿 篇9

  各位評委老師,大家好!

  我是本科數(shù)學**號選手,今天我要進行說課的課題是高中數(shù)學必修一第一章第三節(jié)第一課時《函數(shù)單調(diào)性與最大(。┲怠。我將從教材分析;教學目標分析;教法、學法;教學過程;教學評價五個方面來陳述我對本節(jié)課的設(shè)計方案。懇請在座的專家評委批評指正。

  一、教材分析

  1、教材的地位和作用

 。1)本節(jié)課主要對函數(shù)單調(diào)性的學習;

  (2)它是在學習函數(shù)概念的基礎(chǔ)上進行學習的,同時又為基本初等函數(shù)的學習奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

  (3)它是歷年高考的熱點、難點問題

  2、教材重、難點

  重點:函數(shù)單調(diào)性的定義

  難點:函數(shù)單調(diào)性的證明

  重難點突破:在學生已有知識的基礎(chǔ)上,通過認真觀察思考,并通過小組合作探究的辦法來實現(xiàn)重難點突破。(這個必須要有)

  二、教學目標

  知識目標:

 。1)函數(shù)單調(diào)性的定義

 。2)函數(shù)單調(diào)性的證明

  能力目標:培養(yǎng)學生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想

  情感目標:培養(yǎng)學生勇于探索的精神和善于合作的意識

  三、教法學法分析

  1、教法分析

  “教必有法而教無定法”,只有方法得當才會有效。新課程標準之處教師是教學的組織者、引導(dǎo)者、合作者,在教學過程要充分調(diào)動學生的積極性、主動性。本著這一原則,在教學過程中我主要采用以下教學方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價法

  2、學法分析

  “授人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的只是。學生作為教學活動的主題,在學習過程中的參與狀態(tài)和參與度是影響教學效果最重要的因素。在學法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

  四、教學過程

  1、以舊引新,導(dǎo)入新知

  通過課前小研究讓學生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點,總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當添加手勢,這樣看起來更自然)

  2、創(chuàng)設(shè)問題,探索新知

  緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強調(diào)可以利用作差法來判斷這個函數(shù)的單調(diào)性。

  讓學生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個別同學起來作答,規(guī)范學生的數(shù)學用語。

  讓學生自主學習函數(shù)單調(diào)區(qū)間的定義,為接下來例題學習打好基礎(chǔ)。

  3、例題講解,學以致用

  例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學生個別回答為主,學生回答之后通過互評來糾正答案,檢查學生對函數(shù)單調(diào)區(qū)間的掌握。強調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

  例題講解之后可讓學生自行完成課后練習4,以學生集體回答的方式檢驗學生的學習效果。

  例2是將函數(shù)單調(diào)性運用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學的波意爾定理。這是歷年高考的熱點跟難點問題,這一例題要采用教師板演的方式,來對例題進行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

  學生在熟悉證明步驟之后,做課后練習3,并以小組為單位找部分同學上臺板演,其他同學在下面自行完成,并通過自評、互評檢查證明步驟。

  4、歸納小結(jié)

  本節(jié)課我們主要學習了函數(shù)單調(diào)性的定義及證明過程,并在教學過程中注重培養(yǎng)學生勇于探索的精神和善于合作的意識。

  5、作業(yè)布置

  為了讓學生學習不同的數(shù)學,我將采用分層布置作業(yè)的方式:一組 習題1、3A組1、2、3 ,二組 習題1、3A組2、3、B組1、2

  6、板書設(shè)計

  我力求簡潔明了地概括本節(jié)課的學習要點,讓學生一目了然。

  五、教學評價

  本節(jié)課是在學生已有知識的基礎(chǔ)上學習的,在教學過程中通過自主探究、合作交流,充分調(diào)動學生的積極性跟主動性,及時吸收反饋信息,并通過學生的自評、互評,讓內(nèi)部動機和外界刺激協(xié)調(diào)作用,促進其數(shù)學素養(yǎng)不斷提高。

  以上就是我對本節(jié)課的設(shè)計,謝謝!

高中數(shù)學說課稿 篇10

  一.說教材

  1.1 教材結(jié)構(gòu)與內(nèi)容簡析

  本節(jié)課為《江蘇省中等職業(yè)學校試用教材數(shù)學(第二冊)》5.6函數(shù)圖象的定位作圖法的第一課時,主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。

  函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊涵著重要的數(shù)學思想方法,如化歸思想、映射與對應(yīng)思想、換元方法等。

  1.2 教學目標

  1.2.1知識目標

 、、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號的關(guān)系。

 、、能較熟練地化簡較復(fù)雜的函數(shù)解析式,找出對應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。

 、恰⒊醪綄W會應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。

  1.2.2能力目標

 、拧⒃跀(shù)學實驗平臺上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。

 、、結(jié)合學習中發(fā)現(xiàn)的問題,學會借助于數(shù)學軟件等工具研究、探索和解決問題,學會數(shù)學

  地解決問題。

  ⑶、滲透數(shù)學思想與方法(如化歸、映射的思想,換元的方法)的學習,發(fā)展學生的非邏輯思維能力(合情推理、直覺等)。

  1.2.3情感目標

  培養(yǎng)學生積極參與、合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學生感受數(shù)學學習的意義,改善學生的數(shù)學學習信念(態(tài)度、興趣等)。

  1.3 教材重點和難點處理思路

  重點:函數(shù)圖象的平移變換規(guī)律及應(yīng)用

  難點:經(jīng)歷數(shù)學實驗方法探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復(fù)雜函數(shù)

  教材在這段內(nèi)容的處理上,注重直觀性背景,注重學生豐富感性知識的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實際教學中,我們發(fā)現(xiàn)如果學生不經(jīng)受足夠的親身體驗而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的“告訴”方式,須讓學生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然!

  為了突出重點、突破難點,在教學中采取了以下策略:

 、、從學生已有知識出發(fā),精心設(shè)計一些適合學生學力的數(shù)學實驗平臺,分層次逐步引導(dǎo)學生觀察圖象的平移方向與函數(shù)解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學生認知沖突,激發(fā)學生求知欲,能借助于數(shù)學軟件多角度積極探求錯誤原因,使學生認識到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認識解析式形式化的特點。

 、恰(shù)學實驗采取小組合作研究共同完成簡單實驗報告的形式,通過學生的自主探究、合作交流,從而實現(xiàn)對平移變換規(guī)律知識的建構(gòu)。

  二.說教法

  針對職高一年級學生的認知特點和心理特征,在遵循啟發(fā)式教學原則的基礎(chǔ)上,本節(jié)課我主要采取以實驗發(fā)現(xiàn)法為主,以討論法、練習法為輔的教學方法,引導(dǎo)學生通過實驗手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學知識建構(gòu)過程,體驗數(shù)學發(fā)現(xiàn)的喜悅。

  本節(jié)課的設(shè)計一方面重視學生數(shù)學學習過程是活動的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學規(guī)則去操作數(shù)學,而是采取數(shù)學實驗的方式,使學生有機會經(jīng)受足夠的親身體驗,親歷知識的自主建構(gòu)過程;使學生學會從具體情境中提取適當?shù)母拍,從觀察到的實例中進行概括,進行合理的數(shù)學猜想與數(shù)學驗證,并作更高層次的數(shù)學概括與抽象;從而學會數(shù)學地思考。

  另一方面,注重創(chuàng)設(shè)機會使學生有機會看到數(shù)學的全貌,體會數(shù)學的全過程。整堂課的設(shè)計圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學生清楚研究函數(shù)圖象平移的必要性,明確學習目標,又讓學生初步學會如何應(yīng)用規(guī)律解決問題,體會知識的價值,增強求知欲。

  總之,本節(jié)課采用數(shù)學實驗發(fā)現(xiàn)教學,學生采取小組合作的形式自主探究;利用實物投影進行集體交流,及時反饋相關(guān)信息。

  三.說學法

  “學之道在于悟,教之道在于度!睂W生是學習的主體,教師在教學過程中須將學習的主動權(quán)交給學生。

  美國某大學有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領(lǐng)會了;讓我做過的,我就理解了!蓖ㄟ^學生的自主實驗,在探索新知的經(jīng)歷和獲得新知的體驗的基礎(chǔ)之上,真正正確掌握平移方向。

  教師的“教”不僅要讓學生“學會知識”,更主要的是要讓學生“會學知識”。正如荷蘭數(shù)學教育家弗賴登塔爾所指出,“數(shù)學知識既不是教出來的,也不是學出來的,而是研究出來的!北竟(jié)課的教學中創(chuàng)設(shè)利于學生發(fā)現(xiàn)數(shù)學的實驗情境,讓學生自主地“做數(shù)學”,將傳統(tǒng)意義下的“學習”數(shù)學改變?yōu)椤把芯俊睌?shù)學。從而,使傳授知識與培養(yǎng)能力融為一體,在轉(zhuǎn)變學習方式的同時學會數(shù)學地思考。

  四.說程序

  4.1創(chuàng)設(shè)情境,引入課題

  在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?”

  引導(dǎo)學生討論后,總結(jié)出兩種思路,即:思路1、通過描點法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。

  從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。

  4.2數(shù)學實驗,自主探索

  這一環(huán)節(jié)主要分兩階段。

  1、嘗試初探

  引例、函數(shù) 與 圖象間的關(guān)系

  這一階段主要由教師講解,學生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。

  講解時,利用幾何畫板的度量功能,給出兩個對應(yīng)點的坐標,易于學生發(fā)現(xiàn)點的坐標關(guān)系,并給出相應(yīng)的輔助線,一方面便于學生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學習作好鋪墊。

  2、實驗發(fā)現(xiàn)

  本階段由學生以小組合作探索的形式完成,通過填寫實驗報告的形式完成探索規(guī)律的任務(wù)。 實驗1、試改變實驗平臺1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。

  函數(shù) 解析式平移變換規(guī)律12向左平移2個單位,向上平移1個單位 實驗結(jié)論

【有關(guān)高中數(shù)學說課稿集錦十篇】相關(guān)文章:

有關(guān)高中數(shù)學說課稿合集十篇06-26

有關(guān)高中數(shù)學說課稿集錦五篇07-21

有關(guān)高中數(shù)學說課稿集錦7篇07-14

有關(guān)高中數(shù)學說課稿集錦九篇06-22

有關(guān)高中數(shù)學說課稿錦集十篇08-10

高中數(shù)學說課稿范文集錦十篇08-15

有關(guān)高中數(shù)學說課稿模板集錦10篇07-28

有關(guān)高中數(shù)學說課稿模板集錦7篇07-24

有關(guān)高中數(shù)學說課稿范文匯編十篇08-19